skip to main content


Search for: All records

Creators/Authors contains: "Adiga, Abhijin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 4, 2024
  2. Globalization and climate change facilitate the spread and establishment of invasive species throughout the world via multiple pathways. These spread mechanisms can be effectively represented as diffusion processes on multi-scale, spatial networks. Such network-based modeling and simulation approaches are being increasingly applied in this domain. However, these works tend to be largely domain-specific, lacking any graph theoretic formalisms, and do not take advantage of more recent developments in network science. This work is aimed toward filling some of these gaps. We develop a generic multi-scale spatial network framework that is applicable to a wide range of models developed in the literature on biological invasions. A key question we address is the following: how do individual pathways and their combinations influence the rate and pattern of spread? The analytical complexity arises more from the multi-scale nature and complex functional components of the networks rather than from the sizes of the networks. We present theoretical bounds on the spectral radius and the diameter of multi-scale networks. These two structural graph parameters have established connections to diffusion processes. Specifically, we study how network properties, such as spectral radius and diameter are influenced by model parameters. Further, we analyze a multi-pathway diffusion model from the literature by conducting simulations on synthetic and real-world networks and then use regression tree analysis to identify the important network and diffusion model parameters that influence the dynamics. 
    more » « less
  3. ABSTRACT We study allocation of COVID-19 vaccines to individuals based on the structural properties of their underlying social contact network. Using a realistic representation of a social contact network for the Commonwealth of Virginia, we study how a limited number of vaccine doses can be strategically distributed to individuals to reduce the overall burden of the pandemic.We show that allocation of vaccines based on individuals’ degree (number of social contacts) and total social proximity time is significantly more effective than the usually used age-based allocation strategy in reducing the number of infections, hospitalizations and deaths. The overall strategy is robust even: (𝑖) if the social contacts are not estimated correctly; (𝑖𝑖) if the vaccine efficacy is lower than expected or only a single dose is given; (𝑖𝑖𝑖) if there is a delay in vaccine production and deployment; and (𝑖𝑣) whether or not non-pharmaceutical interventions continue as vaccines are deployed. For reasons of implementability, we have used degree, which is a simple structural measure and can be easily estimated using several methods, including the digital technology available today. These results are significant, especially for resource-poor countries, where vaccines are less available, have lower efficacy, and are more slowly distributed. 
    more » « less
  4. We study the role of vaccine acceptance in controlling the spread of COVID-19 in the US using AI-driven agent-based models. Our study uses a 288 million node social contact network spanning all 50 US states plus Washington DC, comprised of 3300 counties, with 12.59 billion daily interactions. The highly-resolved agent-based models use realistic information about disease progression, vaccine uptake, production schedules, acceptance trends, prevalence, and social distancing guidelines. Developing a national model at this resolution that is driven by realistic data requires a complex scalable workflow, model calibration, simulation, and analytics components. Our workflow optimizes the total execution time and helps in improving overall human productivity.This work develops a pipeline that can execute US-scale models and associated workflows that typically present significant big data challenges. Our results show that, when compared to faster and accelerating vaccinations, slower vaccination rates due to vaccine hesitancy cause averted infections to drop from 6.7M to 4.5M, and averted total deaths to drop from 39.4K to 28.2K nationwide. This occurs despite the fact that the final vaccine coverage is the same in both scenarios. Improving vaccine acceptance by 10% in all states increases averted infections from 4.5M to 4.7M (a 4.4% improvement) and total deaths from 28.2K to 29.9K (a 6% increase) nationwide. The analysis also reveals interesting spatio-temporal differences in COVID-19 dynamics as a result of vaccine acceptance. To our knowledge, this is the first national-scale analysis of the effect of vaccine acceptance on the spread of COVID-19, using detailed and realistic agent-based models. 
    more » « less
  5. null (Ed.)
    Using a discrete dynamical system model for a networked social system, we consider the problem of learning a class of local interaction functions in such networks. Our focus is on learning local functions which are based on pairwise disjoint coalitions formed from the neighborhood of each node. Our work considers both active query and PAC learning models. We establish bounds on the number of queries needed to learn the local functions under both models. We also establish a complexity result regarding efficient consistent learners for such functions. Our experimental results on synthetic and real social networks demonstrate how the number of queries depends on the structure of the underlying network and number of coalitions. 
    more » « less
  6. Using a discrete dynamical system model for a networked social system, we consider the problem of learning a class of local interaction functions in such networks. Our focus is on learning local functions which are based on pairwise disjoint coalitions formed from the neighborhood of each node. Our work considers both active query and PAC learning models. We establish bounds on the number of queries needed to learn the local functions under both models.We also establish a complexity result regarding efficient consistent learners for such functions. Our experimental results on synthetic and real social networks demonstrate how the number of queries depends on the structure of the underlying network and number of coalitions. 
    more » « less
  7. null (Ed.)
    We consider the PAC learnability of the functions at the nodes of a discrete networked dynamical system, assuming that the underlying network is known. We provide tight bounds on the sample complexity of learning threshold functions. We establish a computational intractability result for efficient PAC learning of such functions. We develop efficient consistent learners when the number of negative examples is small. Using synthetic and real-world networks, we experimentally study how the network structure and sample complexity influence the quality of inference. 
    more » « less